Thursday, 20 April 2017

How Web Scraping Services Help Businesses to Do Better?

How Web Scraping Services Help Businesses to Do Better?

Web scraping services help in growing business as well as reaching business to the new success and heights. Data scraping services is the procedure to extract data from the websites like eBay for different business requirements. This gives high quality and accurate data which serves all your business requirements, track your opponents and convert you into decision maker. In addition, eBay web scraping services offer you data in the customized format and extremely cost effective too. It gives you easy way in of website data in the organized and resourceful manner that you can utilize the data for taking knowledgeable decision which is very important for the business.

Also, it creates new opportunities for monetizing online data as well as really suitable for the people that want to begin with lesser investment yet dreaming about enormous success of their business. Other advantages of eBay web scraping services include Lead Generation, Price Comparison, Competition Tracking, Consumer Behavior Tracking, and Data for online stores.

Data Extraction can be defined as the process of retrieving data from an unstructured source in order to process it further or store it. It is very useful for large organizations who deal with large amount of data on a daily basis that need to be processed into meaningful information and stored for later use. The data extraction is a systematic way to extract and structure data from scattered and semi-structured electronic documents, as found on the web and in various data warehouses.

In today's highly competitive business world, vital business information such as customer statistics, competitor's operational figures and inter-company sales figures play an important role in making strategic decisions. By signing on this service provider, you will be get access to critivcal data from various sources like websites, databases, images and documents.

It can help you take strategic business decisions that can shape your business' goals. Whether you need customer information, nuggets into your competitor's operations and figure out your organization's performance, it is highly critical to have data at your fingertips as and when you want it. Your company may be crippled with tons of data and it may prove a headache to control and convert the data into useful information. Data extraction services enable you get data quickly and in the right format.

Source:http://ezinearticles.com/?Data-Extraction-Services-For-Better-Outputs-in-Your-Business&id=2760257

Wednesday, 12 April 2017

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.
- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.
- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).
- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.
- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).
- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.
- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.
- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Source:http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Wednesday, 5 April 2017

Why Businesses Need Data Scraping Service?

With the ever-increasing popularity of internet technology there is an abundance of knowledge processing information that can be used as gold if used in a structured format. We all know the importance of information. It has indeed become a valuable commodity and most sought after product for businesses. With widespread competition in businesses there is always a need to strive for better performances.

Taking this into consideration web data scraping service has become an inevitable component of businesses as it is highly useful in getting relevant information which is accurate. In the initial periods data scraping process included copying and pasting data information which was not relevant because it required intensive labor and was very costly. But now with the help of new data scraping tools like Mozenda, it is possible to extract data from websites easily. You can also take the help of data scrapers and data mining experts that scrape the data and automatically keep record of it.

How Professional Data Scraping Companies and Data Mining Experts Device a Solution?

Data Scraping Plan and Solutions

Why Data Scraping is Highly Essential for Businesses?

Data scraping is highly essential for every industry especially Hospitality, eCommerce, Research and Development, Healthcare, Financial and data scraping can be useful in marketing industry, real estate industry by scraping properties, agents, sites etc., travel and tourism industry etc. The reason for that is it is one of those industries where there is cut-throat competition and with the help of data scraping tools it is possible to extract useful information pertaining to preferences of customers, their preferred location, strategies of your competitors etc.

It is very important in today’s dynamic business world to understand the requirements of your customers and their preferences. This is because customers are the king of the market they determine the demand. Web data scraping process will help you in getting this vital information. It will help you in making crucial decisions which are highly critical for the success of business. With the help of data scraping tools you can automate the data scraping process which can result in increased productivity and accuracy.

Reasons Why Businesses Opt. For Website Data Scraping Solutions:

Website Scraping

Demand For New Data:

There is an overflowing demand for new data for businesses across the globe. This is due to increase in competition. The more information you have about your products, competitors, market etc. the better are your chances of expanding and persisting in competitive business environment. The manner in which data extraction process is followed is also very important; as mere data collection is useless. Today there is a need for a process through which you can utilize the information for the betterment of the business. This is where data scraping process and data scraping tools come into picture.

ImageCredit:3idatascraping.com
Capitalize On Hot Updates:

Today simple data collection is not enough to sustain in the business world. There is a need for getting up to date information. There are times when you will have the information pertaining to the trends in the market for your business but they would not be updated. During such times you will lose out on critical information. Hence; today in businesses it is a must to have recent information at your disposal.

The more recent update you have pertaining to the services of your business the better it is for your growth and sustenance. We are already seeing lot of innovation happening in the field of businesses hence; it is very important to be on your toes and collect relevant information with the help of data scrapers. With the help of data scrapping tools you can stay abreast with the latest developments in your business albeit; by spending extra money but it is necessary tradeoff in order to grow in your business or be left behind like a laggard.

Analyzing Future Demands:

Foreknowledge about the various major and minor issues of your industry will help you in assessing the future demand of your product / service. With the help of data scraping process; data scrapers can gather information pertaining to possibilities in business or venture you are involved in. You can also remain alert for changes, adjustments, and analysis of all aspects of your products and services.

Appraising Business:

It is very important to regularly analyze and evaluate your businesses. For that you need to evaluate whether the business goals have been met or not. It is important for businesses to know about your own performance. For example; for your businesses if the world market decides to lower the prices in order to grow their customer base you need to be prepared whether you can remain in the industry despite lowering the price. This can be done only with the help of data scraping process and data scraping tools.
Article Source :-http://www.habiledata.com/blog/why-businesses-need-data-scraping-service

Introduction About Data Extraction Services

Introduction About Data Extraction Services

World Wide Web and search engine development and data at hand and ever-growing pile of information have led to abundant. Now this information for research and analysis has become a popular and important resource.

According to an investigation "now a days, companies are looking forward to the large number of digital documents, scanned documents to help them convert scanned paper documents.

Today, web services research is becoming more and more complex. The business intelligence and web dialogue to achieve the desired result if the various factors involved. You get all the company successfully for scanning ability and flexibility to your business needs to reach can not scan documents. Before you choose wisely you should hire them for scanning services.

Researchers Web search (keyword) engine or browsing data using specific Web resources can get. However, these methods are not effective. Keyword search provides a great deal of irrelevant data. Since each web page has many outbound links to browse because it is difficult to retrieve the data.

Web mining, web content mining, the use of web structure mining and Web mining is classified. Mining content search and retrieval of information from the web is focused on. Mining use of the extract and analyzes user behavior. Structure mining refers to the structure of hyperlinks.

Processing of data is much more financial institutions, universities, businesses, hospitals, oil and transportation companies and pharmaceutical organizations for the bulk of the publication is useful. There are different types of data processing services are available in the market. , Image processing, form processing, check processing, some of them are interviewed.

Web Services mining can be divided into three subtasks:

Information(IR) clearance: The purpose of this subtask to automatically find all relevant information and filter out irrelevant. Google, Yahoo, MSN, etc. and other resources needed to find information using various search engines like.

Generalization: The purpose of this subtask interested users to explore clustering and association rules, including using data mining methods. Since dynamic Web data are incorrect, it is difficult for traditional data mining techniques are applied to raw data.

Data (DV) Control: The former works with data that knowledge is trying to uncover. Researchers tested several models they can emulate and eventually Internet information is valid for stability.

Source:http://www.sooperarticles.com/business-articles/outsourcing-articles/introduction-about-data-extraction-services-500494.html

Wednesday, 29 March 2017

Global Scraping Devices Market 2017 Medical Research, Clinical Review

The Market and Research study, titled Worldwide Scraping Devices Market 2017, presents critical information and factual data about the Scraping Devices market globally, providing an overall statistical study of the Scraping Devices market on the basis of market drivers, Scraping Devices Market limitations, and its future prospects. The prevalent global Scraping Devices trends and opportunities are also taken into consideration in Scraping Devices industry study.

Global Scraping Devices Market 2017 report has Forecasted Compound Annual Growth Rate (CAGR) in % value for particular period for Scraping Devices market, that will help user to take decision based on futuristic chart. Report also includes key players in global Scraping Devices market. The Scraping Devices market size is estimated in terms of revenue (US$) and production volume in this report. Whereas the Scraping Devices market key segments and the geographical distribution across the globe is also deeply analyzed.

The research report gives an overview of global Scraping Devices industry on by analyzing various key segments of this Scraping Devices market based on the product types, application, and end-use industries, Scraping Devices market scenario. The regional distribution of the Scraping Devices market is across the globe are considered for this Scraping Devices industry analysis, the result of which is utilized to estimate the performance of the global Scraping Devices market over the period from 2015 to foretasted year.

All aspects of the Scraping Devices industry are quantitatively as well as qualitatively assessed to study the global as well as regional Scraping Devices market comparatively. The basic information such as the definition of the Scraping Devices market, prevalent Scraping Devices industry chain, and the government regulations pertaining to the Scraping Devices market are also discussed in the report.

The product range of the Scraping Devices market is examined on the basis of their production chain, Scraping Devices pricing of products, and the profit generated by them. Various regional markets for Scraping Devices are analyzed in this report and the production volume and efficacy of the Scraping Devices industry across the world is also discussed.

Source: http://www.medgadget.com/2017/03/global-scraping-devices-market-2017-medical-research-clinical-review.html

Tuesday, 28 March 2017

New technology Of Website Data Scraping

New technology Of Website Data Scraping

Proved to scrape data from websites using the software program is the process of extracting data from the Web. We offer the best web software to extract data. That kind of experience and knowledge in web data extraction is completed image, screen scrapping, email extractor services, data mining, web hoarding.

You can use the data scraping services?

Data as the information is available on the network, name, word, or what is available in web. be removed, restaurants our city California software and marketing company to use the data from these data can market their product as restaurants. Vast network construction and large building group for your product and company.

Web Data Extraction

Websites tagged text-based languages (HTML and XHTML) are created using, and often contain a lot of useful data as text. However, the majority of web pages and automate human end users are not designed for ease of use. Because of this, scrape toolkits that web content is created. A web scraper to have an API to extract data from a Web site. We have a variety of APIs that you need to scrape data helps help. We offer quality and affordable web applications for data mining

Data collection

In general; the information of the data transfer between the programs, people automatically by computer processing is performed by appropriate structures. Such formats and protocols are strictly structured change documented, analyzed easily, and to maintain a minimum ambiguity. Often, these transmissions are not readable.

Email Extractor

A tool that automatically any reliable source called an email extractor to extract email ids help. It is fundamentally different websites, HTML files, text files or any other format without ID duplicate email contacts collection services.

Screen Scrapping

Data mining is the process of extracting patterns from data services. Data mining to transform data into information is becoming an increasingly important tool. MS Excel, CSV, HTML and many other formats, including any format according to your needs.

Spider Web

A spider is a computer program that a methodical, automated or in an orderly way to surf the World Wide Web. Many sites, in particular search engines, providing up-to-date data, use speeding as a means. There are literally thousands of free proxy servers located throughout the world that are very easy to use.
Web Grabber

Web Grabber is just another name for data scraping or data extraction. Different techniques and processes designed to collect and analyze data, and has developed over time. Web Scraping for business processes that have beaten the market recently is one. It is a process from various sources such as websites and databases with large amounts of data provides.
Have you ever heard "data scraping?" Scraping data scraping technology to new technologies and a successful businessman made his fortune by taking advantage of the data is not.

Source: http://www.selfgrowth.com/articles/new-technology-of-website-data-scraping

Monday, 20 March 2017

Web Data Extraction Services and Data Collection Form Website Pages

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source:http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Friday, 10 March 2017

Understanding URL scraping

Understanding URL scraping

URL scraping is the process where you automatically extract and filter URLs of WebPages that have specific features. The features that you are looking for vary depending on your goal. For example, if you are looking for a site where you can place your comment and get back link juice, you should go for WebPages that allow dofollow comments.

Techniques for URL scraping

There are many techniques that you can use to get the URL that you are looking for. Some of these techniques include:

Copy pasting: this is where you visit a given site and check whether it has the features that you are looking for. For example, if you are interested in dofollow links, you should visit a number of sites and find out if they have your target links. You should then identify the ones that have the features that you are looking for and compile a list.

Text grepping: this is a technique that allows you to search plain text on websites that match a regular expression. Although, the technique was designed for Unix, you can also use it on other operating systems.

HTTP programming: here you retrieve the WebPages that have the features that you are looking for. You should then note the URL of the pages. To retrieve the pages you have to post HTTP requests using a remote server that uses socket programming.

HTML Parser: a HTML parser allows you to mine data by detecting a common template, script or code on a specific website or Webpage. To be able to detect the script or code you have to use one of the many programming languages: HTQL, Java, PHP, XQuery and Python. Once the data is extracted, it's translated and packaged in a way that you are able to easily understand it.

DOM parsing: This is a technique where you retrieve dynamic content that has been generated by client side scripts that execute in a web browser such as Google Chrome, Mozilla Firefox or any other browsers.

URL scraping software: this is the easiest way of scraping URLs as all you need is high quality software that will do all the work for you. You should identify the features that you are interested in and then give command to the software. The software will go through all the sites on the internet and extract the URLs of the pages that have your target features.

Source: http://www.amazines.com/article_detail.cfm/6180373?articleid=6180373

Thursday, 23 February 2017

Benefits of data extraction for the healthcare system

Benefits of data extraction for the healthcare system

When people think of data extraction, they have to understand that is the process of information retrieval, which extract automatically structured information from semi-structured or unstructured web data sources. The companies that do data extraction provide for clients specific information available on different web pages. The Internet is a limitless source of information, and through this process, people from all domains can have access to useful knowledge. The same is with the healthcare system, which has to be concerned with providing patients quality services. They have to deal with poor documentation, and this has a huge impact on the way they provide services, so they have to do their best and try to obtain the needed information. If doctors confront with a lack of complete documentation in a case, they are not able to proper care the patients. The goal of data scraping in this situation is to provide accurate and sufficient information for correct billing and coding the services provided to patients.

The persons that are working in the healthcare system have to review in some situations hundred of pages long documents, for knowing how to deal with a case, and they have to be sure that the ones that contain useful information will be protected for being destroyed or lost in the future. A data mining company has the capability to automatically manage and capture the information from such documents. It helps doctors and healthcare specialists to reduce their dependency on manual data entry, and this helps them to become more efficient. If it is used a data scraping system, data is brought faster and doctors are able to make decisions more effectively. In addition, the healthcare system can collaborate with a company that is able to gather data from patients, to see how a certain type of drug reacts and what side effects it has.

Data mining companies can provide specific tools that can help specialists extract handwritten information. They are based on a character recognition technology that includes a continuously learning network that improves constantly. This assures people that they will obtain an increased level of accuracy. These tools transform the way clinics and hospitals manage and collect data. They are the key for the healthcare system to meet federal guidelines on patient privacy. When such a system is used by a hospital or clinic, it benefits from extraction, classification and management of the patient data. This classification makes the extraction process easier, because when a specialist needs information for a certain case he will have access to them in a fast and effective way. An important aspect in the healthcare system is that specialists have to be able to extract data from surveys. A data scraping company has all the tools needed for processing the information from a test or survey. The processing of this type of information is based on optical mark recognition technology and this helps at extracting the data from checkboxes more easily. The medical system has recorded an improved efficiency in providing quality services for patients since it began to use data scrapping.

Source: http://www.amazines.com/article_detail.cfm/6196290?articleid=6196290

Tuesday, 14 February 2017

Data Mining's Importance in Today's Corporate Industry

Data Mining's Importance in Today's Corporate Industry

A large amount of information is collected normally in business, government departments and research & development organizations. They are typically stored in large information warehouses or bases. For data mining tasks suitable data has to be extracted, linked, cleaned and integrated with external sources. In other words, it is the retrieval of useful information from large masses of information, which is also presented in an analyzed form for specific decision-making.

Data mining is the automated analysis of large information sets to find patterns and trends that might otherwise go undiscovered. It is largely used in several applications such as understanding consumer research marketing, product analysis, demand and supply analysis, telecommunications and so on. Data Mining is based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

It can be technically defined as the automated mining of hidden information from large databases for predictive analysis. Web mining requires the use of mathematical algorithms and statistical techniques integrated with software tools.

Data mining includes a number of different technical approaches, such as:

-  Clustering
-  Data Summarization
-  Learning Classification Rules
-  Finding Dependency Networks
-  Analyzing Changes
-  Detecting Anomalies

The software enables users to analyze large databases to provide solutions to business decision problems. Data mining is a technology and not a business solution like statistics. Thus the data mining software provides an idea about the customers that would be intrigued by the new product.

It is available in various forms like text, web, audio & video data mining, pictorial data mining, relational databases, and social networks. Data mining is thus also known as Knowledge Discovery in Databases since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data Mining therefore has arrived on the scene at the very appropriate time, helping these enterprises to achieve a number of complex tasks that would have taken up ages but for the advent of this marvelous new technology.

Source:http://ezinearticles.com/?Data-Minings-Importance-in-Todays-Corporate-Industry&id=2057401

Wednesday, 8 February 2017

Data Mining and Financial Data Analysis

Introduction:

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent, proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

Source:http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Thursday, 2 February 2017

Data Mining Introduction

Data Mining Introduction

Introduction

We have been "manually" extracting data in relation to the patterns they form for many years but as the volume of data and the varied sources from which we obtain it grow a more automatic approach is required.

The cause and solution to this increase in data to be processed has been because the increasing power of computer technology has increased data collection and storage. Direct hands-on data analysis has increasingly been supplemented, or even replaced entirely, by indirect, automatic data processing. Data mining is the process uncovering hidden data patterns and has been used by businesses, scientists and governments for years to produce market research reports. A primary use for data mining is to analyse patterns of behaviour.

It can be easily be divided into stages

Pre-processing

Once the objective for the data that has been deemed to be useful and able to be interpreted is known, a target data set has to be assembled. Logically data mining can only discover data patterns that already exist in the collected data, therefore the target dataset must be able to contain these patterns but small enough to be able to succeed in its objective within an acceptable time frame.

The target set then has to be cleansed. This removes sources that have noise and missing data.

The clean data is then reduced into feature vectors,(a summarized version of the raw data source) at a rate of one vector per source. The feature vectors are then split into two sets, a "training set" and a "test set". The training set is used to "train" the data mining algorithm(s), while the test set is used to verify the accuracy of any patterns found.

Data mining

Data mining commonly involves four classes of task:

Classification - Arranges the data into predefined groups. For example email could be classified as legitimate or spam.
Clustering - Arranges data in groups defined by algorithms that attempt to group similar items together
Regression - Attempts to find a function which models the data with the least error.
Association rule learning - Searches for relationships between variables. Often used in supermarkets to work out what products are frequently bought together. This information can then be used for marketing purposes.

Validation of Results

The final stage is to verify that the patterns produced by the data mining algorithms occur in the wider data set as not all patterns found by the data mining algorithms are necessarily valid.

If the patterns do not meet the required standards, then the preprocessing and data mining stages have to be re-evaluated. When the patterns meet the required standards then these patterns can be turned into knowledge.

Source : http://ezinearticles.com/?Data-Mining-Introduction&id=2731583

Monday, 16 January 2017

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data mining can be considered to be the crucial process of dragging out accurate and probably useful details from the data. This application uses analytical as well as visualization technology in order to explore and represent content in a specific format, which is easily engulfed by a layman. It is widely used in a variety of profiling exercises, such as detection of fraud, scientific discovery, surveys and marketing research. Data management has applications in various monetary sectors, health sectors, bio-informatics, social network data research, business intelligence etc. This module is mainly used by corporate personals in order to understand the behavior of customers. With its help, they can analyze the purchasing pattern of clients and can thus expand their market strategy. Various financial institutions and banking sectors use this module in order to detect the credit card fraud cases, by recognizing the process involved in false transactions. Data management is correlated to expertise and talent plays a vital role in running such kind of function. This is the reason, why it is usually referred as craft rather than science.

The main role of data mining is to provide analytical mindset into the conduct of a particular company, determining the historical data. For this, unknown external events and fretful activities are also considered. On the imperious level, it is more complicated mainly for regulatory bodies for forecasting various activities in advance and taking necessary measures in preventing illegal events in future. Overall, data management can be defined as the process of extracting motifs from data. It is mainly used to unwrap motifs in data, but more often, it is carried out on samples of the content. And if the samples are not of good representation then the data mining procedure will be ineffective. It is unable to discover designs, if they are present in the larger part of data. However, verification and validation of information can be carried out with the help of such kind of module.

Source:http://ezinearticles.com/?Data-Mining---Efficient-in-Detecting-and-Solving-the-Fraud-Cases&id=4378613

Saturday, 7 January 2017

Data Mining

Data Mining

Data mining is the retrieving of hidden information from data using algorithms. Data mining helps to extract useful information from great masses of data, which can be used for making practical interpretations for business decision-making. It is basically a technical and mathematical process that involves the use of software and specially designed programs. Data mining is thus also known as Knowledge Discovery in Databases (KDD) since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data mining is gaining a lot of importance because of its vast applicability. It is being used increasingly in business applications for understanding and then predicting valuable information, like customer buying behavior and buying trends, profiles of customers, industry analysis, etc. It is basically an extension of some statistical methods like regression. However, the use of some advanced technologies makes it a decision making tool as well. Some advanced data mining tools can perform database integration, automated model scoring, exporting models to other applications, business templates, incorporating financial information, computing target columns, and more.

Some of the main applications of data mining are in direct marketing, e-commerce, customer relationship management, healthcare, the oil and gas industry, scientific tests, genetics, telecommunications, financial services and utilities. The different kinds of data are: text mining, web mining, social networks data mining, relational databases, pictorial data mining, audio data mining and video data mining.

Some of the most popular data mining tools are: decision trees, information gain, probability, probability density functions, Gaussians, maximum likelihood estimation, Gaussian Baves classification, cross-validation, neural networks, instance-based learning /case-based/ memory-based/non-parametric, regression algorithms, Bayesian networks, Gaussian mixture models, K-Means and hierarchical clustering, Markov models, support vector machines, game tree search and alpha-beta search algorithms, game theory, artificial intelligence, A-star heuristic search, HillClimbing, simulated annealing and genetic algorithms.

Some popular data mining software includes: Connexor Machines, Copernic Summarizer, Corpora, DocMINER, DolphinSearch, dtSearch, DS Dataset, Enkata, Entrieva, Files Search Assistant, FreeText Software Technologies, Intellexer, Insightful InFact, Inxight, ISYS:desktop, Klarity (part of Intology tools), Leximancer, Lextek Onix Toolkit, Lextek Profiling Engine, Megaputer Text Analyst, Monarch, Recommind MindServer, SAS Text Miner, SPSS LexiQuest, SPSS Text Mining for Clementine, Temis-Group, TeSSI®, Textalyser, TextPipe Pro, TextQuest, Readware, Quenza, VantagePoint, VisualText(TM), by TextAI, Wordstat. There is also free software and shareware such as INTEXT, S-EM (Spy-EM), and Vivisimo/Clusty.

Source : http://ezinearticles.com/?Data-Mining&id=196652