Wednesday, 31 August 2016

Why is a Web scraping service better than Scraping tools

Why is a Web scraping service better than Scraping tools

Web scraping has been making ripples across various industries in the last few years. Newer businesses can employ web scraping to gain quick market insights and equip themselves to take on their competitors. This works like clockwork if you know how to do the analysis right. Before we jump into that, there is the technical aspect of web scraping. Should your company use a scraping tool to get the required data from the web? Although this sounds like an easy solution, there is more to it than what meets the eye. We explain why it’s better to go with a dedicated web scraping service to cover your data acquisition needs rather than going by the scraping tool route.

Cost is lowered

Although this might come as a surprise, the cost of getting data from employing a data scraping tool along with an IT personnel who can get it done would exceed the cost of a good subscription based web scraping service. Not every company has the necessary resources needed to run web scraping in-house. By depending on a Data service provider, you will save the cost of software, resources and labour required to run web crawling in the firm. Besides, you will also end up having more time and less worries. More of your time and effort can therefore go into the analysis part which is crucial to you as a business owner.

Accessibility is high with a service

Multifaceted websites make it difficult for the scraping tools to extract data. A good web scraping service on the other hand can easily deal with bottlenecks in the scraping process when it may arise. Websites to be scraped often undergo changes in their structure which calls for modification of the crawler accordingly. Unlike a scraping tool, a dedicated service will be able to extract data from complex sites that use Ajax, Javascript and the like. By going with a subscription based service, you are doing yourself the favour of not being involved in this constant headache.

Accuracy in results

A DIY scraping tool might be able to get you data, but the accuracy and relevance of the acquired data will vary. You might be able to get it right with a particular website, but that might not be the case with another. This gives uncertainty to the results of your data acquisition and could even be disastrous for your business. On the other hand, a good scraping service will give you highly refined data which is in a ready to consume form.

Outcomes are instant with a service

Considering the high resource requirements of the web scraping process, your scraping tool is likely to be much slower than a reputed service that has got the right infrastructure and resources to scrape data from the web efficiently. It might not be feasible for your firm to acquire and manage the same setup since that could affect the focus of your business.

Tidying up of Data is an exhausting process

Web scrapers collect data into a dump file which would be huge in size. You will have to do a lot of tidying up in this to get data in a usable format. With the scraping tools route, you would be looking for more tools to clean up the data collected. This is a waste of time and effort that you could use in much better aspects of your business. Whereas with a web scraping service, you won’t have to worry about cleaning up of the data as it comes with the service. You get the data in a plug and use format which gives you more time to do better things.

Many sites have policies for data scraping

Sometimes, websites that you want to scrape data from might have policies discouraging the act. You wouldn’t want to act against their policies being ignorant of their existence and get into legal trouble. With a web scraping service, you don’t have to worry about these. A well-established data scraping provider will definitely follow the rules and policies set by the website. This would mean you can be relieved of such worries and go ahead with finding trends and ideas from the data that they provide.

More time to analyse the data

This is so far the best advantage of going with a scraping service rather than a tool. Since all the things related to data acquisition is dealt by the scraping service provider, you would have more time for analysing and deriving useful business decisions from this data. Being the business owner, analysing the data with care should be your highest priority. Since using a scraping tool to acquire data will cost you more time and effort, the analysis part is definitely going to suffer which defies your whole purpose.

Bottom line

It is up to you to choose between a web scraping tool and a dedicated scraping service. Being the business owner, it i s much better for you to stay away from the technical aspects of web scraping and focus on deriving a better business strategy from the data. When you have made up your mind to go with a data scraping service, it is important to choose the right web scraping service for maximum benefits.

Source: https://www.promptcloud.com/blog/web-scraping-services-better-than-scraping-tools

Wednesday, 24 August 2016

ERP Data Conversions - Best Practices and Steps

ERP Data Conversions - Best Practices and Steps

Every company who has gone through an ERP project has gone through the painful process of getting the data ready for the new system. The process of executing this typically goes through the following steps:

(1) Extract or define

(2) Clean and transform

(3) Load

(4) Validate and verify

This process is typically executed multiple times (2 - 5+ times depending on complexity) through an ERP project to ensure that the good data ends up in the new system. If the data is either incorrect, not well enough cleaned or adjusted or loaded incorrectly in to the new system it can cause serious problems as the new system is launched.

(1) Extract or define

This involves extracting the data from legacy systems, which are to be decommissioned. In some cases the data may not exist in a legacy system, as the old process may be spreadsheet-based and has to be created from scratch. Typically this involves creating some extraction programs or leveraging existing reports to get the data in to a format which can be put in to a spreadsheet or a data management application.

(2) Data cleansing

Once extracted it normally reviewed is for accuracy by the business, supported by the IT team, and/or adjusted if incorrect or in a structure which the new ERP system does not understand. Depending on the level of change and data quality this can represent a significant effort involving many business stakeholders and required to go through multiple cycles.

(3) Load data to new system

As the data gets structured to a format which the receiving ERP system can handle the load programs may also be build to handle certain changes as part of the process of getting the data converted in to the new system. Data is loaded in to interface tables and loaded in to the new system's core master data and transactions tables.

When loading the data in to the new system the inter-dependency of the different data elements is key to consider and validate the cross dependencies. Exceptions are dealt with and go in to lessons learned and to modify extracts, data cleansing or load process in to the next cycle.

(4) Validate and verify

The final phase of the data conversion process is to verify the converted data through extracts, reports or manually to ensure that all the data went in correctly. This may also include both internal and external audit groups and all the key data owners. Part of the testing will also include attempting to transact using the converted data successfully.

The topmost success factors or best practices to execute a successful conversion I would prioritize as follows:

(1) Start the data conversion early enough by assessing the quality of the data. Starting too late can result in either costly project delays or decisions to load garbage and "deal with it later" resulting in an increase in problems as the new system is launched.

(2) Identify and assign data owners and customers (often forgotten) for the different elements. Ensure that not only the data owners sign-off on the data conversions but that also the key users of the data are involved in reviewing the selection criteria's, data cleansing process and load verification.

(3) Run sufficient enough rounds of testing of the data, including not only validating the loads but also transacting with the converted data.

(4) Depending on the complexity, evaluate possible tools beyond spreadsheets and custom programming to help with the data conversion process for cleansing, transformation and load process.

(5) Don't under-estimate the effort in cleansing and validating the converted data.

(6) Define processes and consider other tools to help how the accuracy of the data will be maintained after the system goes live.

Source: http://ezinearticles.com/?ERP-Data-Conversions---Best-Practices-and-Steps&id=7263314

Friday, 5 August 2016

Data Discovery vs. Data Extraction

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.

Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Tuesday, 2 August 2016

Tips for scraping business directories

Tips for scraping business directories

Are you looking to scrape business directories to generate leads?

Here are a few tips for scraping business directories.

Web scraping is not rocket science. But there are good and bad and worst ways of doing it.

Generating sales qualified leads is always a headache. The old school ways are to buy a list from sites like Data.com. But they are quite expensive.

Scraping business directories can help generate sales qualified leads. The following tips can help you scrape data from business directories efficiently.

1) Choose a good framework to write the web scrapers. This can help save a lot of time and trouble. Python Scrapy is our favourite, but there are other non-pythonic frameworks too.

2) The business directories might be having anti-scraping mechanisms. You have to use IP rotating services to do the scrape. Using IP rotating services, crawl with multiple changing IP addresses which can cover your tracks.

3) Some sites really don’t want you to scrape and they will block the bot. In these cases, you may need to disguise your web scraper as a human being. Browser automation tools like selenium can help you do this.

4) Web sites will update their data quite often. The scraper bot should be able to update the data according to the changes. This is a hard task and you need professional services to do that.

One of the easiest ways to generate leads is to scrape from business directories and use enrich them. We made Leadintel for lead research and enrichment.

Source: http://blog.datahut.co/tips-for-scraping-business-directories/